LeetCode 115. Distinct Subsequences
Given two strings s
and t
, return the number of distinct subsequences of s
which equals t
.
A string’s subsequence is a new string formed from the original string by deleting some (can be none) of the characters without disturbing the remaining characters’ relative positions. (i.e., “ACE” is a subsequence of “ABCDE” while “AEC” is not).
The test cases are generated so that the answer fits on a 32-bit signed integer.
Example 1:
Input: s = "rabbbit", t = "rabbit"
Output: 3
Explanation:
As shown below, there are 3 ways you can generate "rabbit" from S.
Example 2:
Input: s = "babgbag", t = "bag"
Output: 5
Explanation:
As shown below, there are 5 ways you can generate "bag" from S.
method
dp[i][j]
:以i-1
结尾的s
能能由以j-1
结尾的t
组成的个数
如果s[i-1]==t[j-1]
- 可以用
s[i-1]
来匹配t[j-1]
,所以dp[i][j]=dp[i-1][j-1]
,因为可以匹配上,所以个数就不变,相当于加这个字符和没加这个字符结果一样 - 也可以不用
s[i-1]
,只用s[i-2]
来匹配t[j-1]
,所以dp[i][j]=dp[i-1][j]
,s
没增加,但t
增加了一个字符
如果s[i-1]!=t[i-1]
,就只能删掉s[i-1]
,用s[0,i-2]
来匹配t[0,i-1]
,所以dp[i][j]=dp[i-1][j]
初始化,如果j=0
,则t
为空字符串,s
只有删除所有字符才会变成空,所以空字符在s
中只出现一次,dp[i][0]=1
过程中加法会溢出,所以用uint64_t
int numDistinct(string s, string t) {
int m = s.size(), n = t.size();
vector<vector<uint64_t>> dp(m + 1, vector<uint64_t>(n + 1));
for (int i = 0; i <= m; i++) {
dp[i][0] = 1;
}
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (s[i - 1] == t[j - 1])
dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
else
dp[i][j] = dp[i - 1][j];
}
}
return dp[m][n];
}
可以只用一行
int numDistinct(string s, string t) {
int m = s.size(), n = t.size();
vector<uint64_t> dp(n + 1);
dp[0] = 1;
for (int i = 1; i <= m; i++) {
for (int j = n; j > 0; j--) { // 从后往前
if (s[i - 1] == t[j - 1]) dp[j] += dp[j - 1];
}
}
return dp[n];
}