LeetCode 108. Convert Sorted Array to Binary Search Tree
Given an integer array nums where the elements are sorted in ascending order, convert it to a height-balanced binary search tree.
A height-balanced binary tree is a binary tree in which the depth of the two subtrees of every node never differs by more than one.
Example:
Input: nums = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5] or [0,-10,5,null,-3,null,9]
Explanation:
method
数组中间节点为根节点,递归处理左边数组和右边数组
注意还是左闭右开[begin, end)
TreeNode* traversal(vector<int>& nums, int begin, int end) {
if (begin >= end) return nullptr;
int mid = begin + end >> 1;
TreeNode *root = new TreeNode(nums[mid]);
root->left = traversal(nums, begin, mid);
root->right = traversal(nums, mid + 1, end);
return root;
}
TreeNode* sortedArrayToBST(vector<int>& nums) {
return traversal(nums, 0, nums.size());
}
LeetCode 109. Convert Sorted List to Binary Search Tree
Given the head of a singly linked list where elements are sorted in ascending order, convert it to a height balanced BST.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
Example 1:
Input: head = [-10,-3,0,5,9]
Output: [0,-3,9,-10,null,5]
Explanation: One possible answer is [0,-3,9,-10,null,5], which represents the shown height balanced BST.
method
跟数组一样维护一个左闭右开的区间[head, tail)
,然后找中间节点
TreeNode* traversal(ListNode *head, ListNode *tail) {
if (head == tail) return nullptr; // 空节点
ListNode *fast = head;
ListNode *slow = head;
while (fast != tail && fast->next != tail) { // 注意这里是tail
fast = fast->next->next;
slow = slow->next;
}
TreeNode *root = new TreeNode(slow->val);
root->left = traversal(head, slow);
root->right = traversal(slow->next, tail);
return root;
}
TreeNode* sortedListToBST(ListNode* head) {
return traversal(head, nullptr);
}