Processing math: 100%

玩命加载中 . . .

209-长度最小的子数组


LeetCode 209. Minimum Size Subarray Sum

LeetCode-209

Given an array of positive integers nums and a positive integer target, return the minimal length of a contiguous subarray [numsl, numsl+1, ..., numsr-1, numsr] of which the sum is greater than or equal to target. If there is no such subarray, return 0 instead.

Example 1:

cpp
Input: target = 7, nums = [2,3,1,2,4,3]
Output: 2
Explanation: The subarray [4,3] has the minimal length under the problem constraint.

Example 2:
cpp
Input: target = 4, nums = [1,4,4]
Output: 1

method: 滑动窗口

sum是区间[j, i]的和

  • 如果sum小于target,区间就扩大,即i++
  • 如果sum大于target,区间就缩小,即j++
cpp
int minSubArrayLen(int target, vector<int>& nums) {
    int res = INT_MAX;
    int sum = 0;
    for (int i = 0, j = 0; i < nums.size(); i++) {
        sum += nums[i]; // 就硬加
        while (sum >= target) {     // 大于等于target就记录结果
            res = min(res, i - j + 1);  // [j, i]
            sum -= nums[j];
            j++;    // j移动,区间缩小
        }
    }
    return res == INT_MAX ? 0 : res;
}

时间复杂度:O(n)


LeetCode 862. 和至少为 K 的最短子数组

给你一个整数数组 nums 和一个整数 k ,找出 nums 中和至少为 k 的 最短非空子数组 ,并返回该子数组的长度。如果不存在这样的 子数组 ,返回 -1 。

子数组 是数组中 连续 的一部分。

示例 1:

cpp
输入:nums = [2,-1,2], k = 3
输出:3

method: 前缀和+单调双端队列

prefix[i]记录的是0i-1的前缀和

对于一个prefix[y],我们希望找到一个prefix[x],使得prefix[y]prefix[x]k,并且使得yx最小

  • 队列里面的前缀和是单调递增的(虽然存的是下标),如果prefix[y]比队列末尾的元素小,队列的末尾元素就要弹出,因为如果x1<x2,且prefix[x1]prefix[x2],此时x1满足prefix[y]prefix[x1]k,那么x2肯定也满足prefix[y]prefix[x2]k,因为prefix[x2]更小,并且x2更大,所以yx2肯定小于yx1,所以肯定要取x2,不会取x1,所以直接弹出
  • 因为是递增的,所以来一个prefix[y],就从队头开始找是否有prefix[x],使得prefix[y]prefix[x]k成立,如果第一个就不成立,后面肯定都不成立,所以不用找了,如果第一个成立,后面可能还有成立的,所以要继续找,所以用while,并且要将成立的prefix[x]弹出,因为即使后面又来了一个prefix[y]yx肯定小于yx,所以直接弹出
cpp
int shortestSubarray(vector<int>& nums, int k) {
    int n = nums.size();
    vector<long> prefix(n + 1);
    for (int i = 1; i <= n; i++) {
        prefix[i] = prefix[i - 1] + nums[i - 1];
    }
    deque<int> dq;
    dq.push_back(0);
    int res = INT_MAX;
    for (int i = 1; i <= n; i++) {
        while (!dq.empty() && prefix[i] <= prefix[dq.back()]) {
            dq.pop_back();
        }
        while (!dq.empty() && prefix[i] - prefix[dq.front()] >= k) {
            res = min(res, i - dq.front()); // 找到了就更新结果 [dq.front(), i)
            dq.pop_front(); // 然后将队头元素弹出
        }
        dq.push_back(i);    // 队列里存的是下标
    }
    return res == INT_MAX ? -1 : res;
}

文章作者: kunpeng
版权声明: 本博客所有文章除特別声明外,均采用 CC BY 4.0 许可协议。转载请注明来源 kunpeng !